
'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

BBA Honours 3rd Semester Examination, 2021

GE2-P1-BBA (304)

Quantitative TechniQues for Management

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any two questions from the following

1. (a) Use the two-phase method to solve the following LPP

$$
6+6=12
$$

Minimize $\quad Z=x_{1}+x_{2}$
Subject to $\quad 2 x_{1}+x_{2} \geq 4$

$$
x_{1}+7 x_{2} \geq 7
$$

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

(b) Solve the following LPP by the method of big M

Minimize	$Z=4 x_{1}+x_{2}$
Subject to	$3 x_{1}+x_{2}=3$
	$4 x_{1}+3 x_{2} \geq 6$
	$x_{1}+2 x_{2} \leq 4$
	$x_{1} \geq 0, x_{2} \geq 0$

2. Solve the following transportation problem using VAM and hence find the optimum solution. The Costs to Transportation Table is given below:

Warehouses	Destinations				
	P	Q	R	S	
A	10	18	11	7	20
B	9	12	14	6	40
C	8	9	12	10	35
Demand	16	18	31	30	

3. Find the optimum solution of the game
Player - B

Player A

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	3	2	4	0
$\mathrm{~A}_{2}$	2	4	2	4
$\mathrm{~A}_{3}$	4	2	4	0
$\mathrm{~A}_{4}$	0	4	0	8

4. The following table shows the activities for completing a project with their $4+4+4=12$ optimistic, pessimistic and most likely time estimates in terms of days.

Job	\mathbf{A}	\mathbf{M}	\mathbf{b}
$1-2$	3	6	15
$1-6$	2	5	14
$2-3$	6	12	30
$2-4$	2	5	8
$3-5$	5	11	17
$4-5$	3	6	15
$5-8$	1	4	7
$6-7$	3	9	27
$7-8$	4	19	28

(a) Draw the project network
(b) Find the critical path
(c) Find the probability of the project being completed in 31 days.

GROUP-B

5. Answer any four questions:
(a) A company has 5 jobs to be done on five machines. Any job can be done on any machine. The costs of doing the jobs on different machines are given below. Assign the jobs for different machines so as to minimize the total cost.

	Machines					
Jobs	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	
$\mathbf{1}$	13	8	16	18	19	
$\mathbf{2}$	9	15	24	9	12	
$\mathbf{3}$	12	9	4	4	4	
$\mathbf{4}$	4	12	10	8	13	
$\mathbf{5}$	15	17	18	12	20	

(b) Write a short note on:
(i) Hurwicz Criterion
(ii) Minimax Regret Criterion

UG/CBCS/BBA/Hons./3rd Sem./BBAGE3/2021

(c) Write the dual of the following primal LPP

$$
\operatorname{Min} Z=5 x_{1}+8 x_{2}+10 x_{3}
$$

Subject to

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3} \leq 120 \\
& 3 x_{1}-5 x_{2}-2 x_{3} \geq 90 \\
& 2 x_{1}+4 x_{2}+2 x_{3}=100 \\
& x_{1} \geq 0, x_{2} \geq 0 \text { and } x_{3} \geq 0
\end{aligned}
$$

(d) Solve the following LPP using simplex method

$$
\operatorname{Min} Z=12 x_{1}+16 x_{2}
$$

Subject to

$$
\begin{aligned}
& 20 x_{1}+16 x_{2} \leq 200 \\
& 12 x_{1}+20 x_{2} \geq 150 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(e) Solve the game

	Player - B			
Player	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	
Player A	A_{1}	1	3	1
	$\mathrm{~A}_{2}$	0	-4	-3
	$\mathrm{~A}_{3}$	1	5	-1

(f) Explain the differences between a transportation problem and an assignment problem.

GROUP-C

6. Answer any four questions:

$$
3 \times 4=12
$$

(a) What do you mean by mixed strategy? 3
(b) Define feasible solution and optimum solution. 3
(c) What do you mean by saddle point?
(d) Distinguish between risk and uncertainty. 3
(e) How would you calculate total float, free float and independent float? 3
(f) What do you mean by expected pay-off? 3

